STUDY MODULE D	ESCRIPTION FORM		
Name of the module/subject		Code 1010342531010327413	
Field of study Mathematics	Profile of study (general academic, practical) (brak)	Year /Semester 2 / 3	
Elective path/specialty	Subject offered in: polish	Course (compulsory, elective) obligatory	
Cycle of study:	Form of study (full-time,part-time)		
Second-cycle studies	full-time		
No. of hours		No. of credits	
Lecture: 2 Classes: - Laboratory: -	Project/seminars:	1 6	
Status of the course in the study program (Basic, major, other)	(university-wide, from another f	ield)	
(brak) (b		(brak)	
Education areas and fields of science and art		ECTS distribution (number and %)	
technical sciences		6 100%	
Technical sciences		6 100%	

Responsible for subject / lecturer:

Prof. dr hab. inż. Ryszard Nawrowski email: ryszard.nawrowski@put.poznan.pl tel. 616652788 Elektryczny

ul. Piotrowo 3A, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Information in field of Mathematics, Numerical Analysis, Informatics, Theory of circuits, Electrical engineering, Electrical Power Engineering.		
2	Skills	Skills in understanding and interpretation of information and effective self-education in field of science related with chosen academic discipline.		
3	Social competencies	Student should have consciousness of necessity of improving his competences, readiness to work individual and cooperate within groups.		

Assumptions and objectives of the course:

Presentation of:

- basics of design,
- rules for creating project documentation,
- selected numerical analysis methods used to solve issues in field of theory of technical sciences,
- parts of codes in c#.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. student knows advanced computational techniques, supporting the work of mathematics and understand their limitations [K_W08+++]
- 2. student knows approximate numerical methods for solving mathematical problems (eg, differential equations) made ??in other fields of science (eg, electrical engineering, industrial technology, management, etc.) [K_W10++]
- 3. student knows well, at least one software package used for symbolic computation, and one package for statistical data processing [K_W12++]

Skills:

- 1. student recognizes mathematical structures (such as algebra, geometry) in physical theories [K_U17+++]
- 2. student understands the mathematical basis of the analysis of algorithms and computational processes [K_U19++]
- 3. student is able to construct a correct numerical algorithms, taking into account the complexity of computing, designed to solve common and unusual mathematical problems [K_U20++]

Social competencies:

Faculty of Electrical Engineering

- 1. student knows his own limitations of knowledge and understands the need for further education [K_K01+++]
- 2. student is able to work as a team, understands the need for regular work on any projects that are long term in nature [K_K03++]
- 3. student can independently search the literature, even in foreign languages [K_K06++]

Assessment methods of study outcomes

Lecture:

- assess the knowledge and skills listed on the written and oral exam of the computerization of designing in electrical engineering.

Class project:

- Assessment of knowledge and skills on the basis of assessment involving the numerical solution of the problem-information in the field of technical sciences (eg, electrical engineering),
- Checking and favoring knowledge and skills for the implementation issues of problem (homework).

Obtaining additional points for activity during exercises, in particular way for:

- proposing to discuss additional aspects of the subject,
- effective use of knowledge obtained during solving of given problem,
- comments related to improve teaching material,
- aesthetics of solved problems? within self-education.

Course description

Presentation of: rules of designing and creating projects documentation, convergence and stability of numerical solutions, calculations errors, issues of numerical integration of electrical quantities, numerical solutions of equations and systems of equations: linear, nonlinear, differential and partial differential used in electrical engineering and methods of determined and not determined optimization.

Basic bibliography:

- 1. Kącki E.: "Metody numeryczne dla inżynierów", WPŁ, Łódź 2003.
- 2. Bolkowski S.: "Teoria obwodów elektrycznych", WNT, Warszawa 1998.
- 3. Fortuna Z.: "Metody numeryczne", WNT, Warszawa 1998.

Additional bibliography:

- 1. Baron B.: "Metody numeryczne w Turbo Pascalu", Helion, Gliwice 1996.
- 2. Normy i katalogi do danego projektu.

Result of average student's workload

Activity	Time (working hours)
1. participation in the lectures	30
2. participate in the consultations on of the lecture	4
3. preparation for the exam	20
4. participation in the exam	5

Student's workload

Source of workload	hours	ECTS
Total workload	152	6
Contact hours	82	3
Practical activities	82	3